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ABSTRACT.  A direct interconnection network (IN) of a multiprocessor system is represented by a connected 

graph whose vertices represent processing nodes and edges represent communication links. A processing 

node (PN) usually consists of one or more processors, local memory, and communication router. 

The butterfly and Benes networks are important class of multistage direct interconnection networks which are 

defined based on the schemes that connect the units of a multiprocessing system and needs n  stages to 

connect 
n2  processors; at each stage a switch is thrown, depending on a particular bit in the addresses of the 

processors being connected. In this paper, degree based topological indices of these direct interconnection 

networks are strong-minded.  
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1  INTRODUCTION AND PRELIMINARY RESULTS 
A single number which characterizes the graph of a 

molecular structure is called a graph-theoretical invariant or 

topological index. Topological indices have been found as a 

base to understand the topologies of interconnection 

networks. In addition, these numerical parameters discuss the 

structural properties of these important architectures. 

  A direct interconnection network (IN) of a multiprocessor 

system is represented by a connected graph whose vertices 

represent processing nodes and edges represent 

communication links. A processing node (PN) usually 

consists of one or more processors, local memory, and 

communication router. An IN should transfer a maximum 

number of messages in the shortest time with minimum cost 

and maximal reliability. Clearly, any design of an IN is a 

tradeoff of various contradictory requirements. 

  Butterfly graphs are defined as the underlying graphs of Fast 

Fourier Transforms (FFT) networks which can perform the 

FFT very efficiently. The butterfly network consists of a 

series of switch stages and interconnection patterns, which 

allows ‘ n ’ inputs to be connected to ‘ n ’ outputs. The Benes 

network consists of back-to-back butterflies. As butterfly is 

known for FFT, Benes is known for permutation routing [2]. 

The butterfly and Benes networks are important multistage 

interconnection networks, which possess attractive topologies 

for communication networks [17]. They have been used in 

parallel computing systems such as IBM, SP1/SP 2 , MIT 

Transit Project, NEC Cenju- 3  and used as well in the 

internal structures of optical couplers [16, 19]. The multistage 

networks have long been used as communication networks 

for parallel computing [15]. 

  A graph ),( EVG  with vertex set V  and edge set E  is 

connected, if there exist a connection between any pair of 

vertices in G . The degree of a vertex in a network graph is 

the number of vertices which are connected to that fixed 

vertex by the edges. 

  In this article, G  is considered to be a connected graph with 

vertex set )(GV  and edge set )(GE , ud  is the degree of 

vertex )(GVu . The notations used in this article are 

mainly taken from books [4, 10]. 

  The general Randi c  index was proposed by Bollobás and 

Erdös [3] and Amic et al. [1] independently, in 1998 . Then 

it has been extensively studied by both mathematicians and 

theoretical chemists [13]. 

Definition 1.1.  For a graph G, the general Randi c  index 

)(GR  is the sum of 
)( vudd  over all edges 

)(= GEuve   defined as  


 )(=)(
)(

vu

GEuv

ddGR 


 

where 0)(   is an arbitrary real number. 

  With motivation from the Randi c  index, a closely related 

variant of the Randi c  connectivity index called the sum-

connectivity index was recently proposed by Zhou and 

Trinajsti c  [20] in 2009.  

Definition 1.2.  The sum- connectivity index )(G  of graph 

G is defined as follows: 

2

1

)(

)(=)(




 vu

GEuv

ddGX  

 and the general sum-connectivity index )(GX  was 

defined as follows:  







 )(=)(
)(

vu

GEuv

ddGX  
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 where 0)(   is an arbitrary real number. 

  
)(GX  is a graph-based molecular structure descriptor. The 

sum-connectivity index has been found to correlate well with 

 -electronic energy of benzenoid hydrocarbons. The the 

sum-connectivity index and original Randi c  connectivity 

index are highly intercorrelated molecular descriptors. Some 

mathematical properties of the sum-connectivity and general 

sum-connectivity are given in [5, 6]. 

  An important topological index introduced about forty years 

ago by Ivan Gutman and Trinajsti c  is the Zagreb index or 

more precisely first zagreb index denoted by )(1 GM  and 

was defined as the sum of degrees of end vertices of all edges 

of G . 

Definition 1.3.  The first zagreb index is defined as  

)(=)(
)(

1 vu

GEuv

ddGM 


 

  One of the well-known connectivity topological index is 

atom-bond connectivity )(ABC  index introduced by 

Estrada et al. in [7]. 

Definition 1.4.  For a graph G , the ABC  index is defined 

as  

vu

vu

GEuv dd

dd
GABC

2
=)(

)(





 

  Another well-known connectivity topological descriptor is 

geometric-arithmetic )(GA  index which was introduced by 

Vuki c


evi c  et al. in [18]. 

Definition 1.5.  Consider a graph G , then its GA  index is 

defined as  

)(

2
=)(

)( vu

vu

GEuv dd

dd
GGA





 

  The fourth version of ABC  index is introduced by 

Ghorbani et al. [8] recently in 2010. 

Definition 1.6.  Let G  be a graph, then its fourth ABC  

index is defined as  

vu

vu

GEuv SS

SS
GABC

2
=)(

)(

4





 

  Recently fifth version of GA  index is proposed by Graovac 

et al. [9] in 2011. 

Definition 1.7. For a graph G , the fifth version of GA  

index is defined as  

)(

2
=)(

)(

5

vu

vu

GEuv SS

SS
GGA





 

Following lemma is important throughout our discussion. 

Lemma 1.1. [12] For any graph G , when 1= , 

)(2=)( 1 GXGH . 

 

2  MAIN RESULTS 
In this article, we study the general sum-connectivity, 

Harmonic, First Zagreb, 4ABC  and 5GA  indices and give 

closed formulas of these indices for two important classes of 

interconnection networks named as butterfly and Benes 

networks. For further study of topological indices of 

networks see [11, 14].  

2.1  Results for butterfly network 

The most popular bounded-degree derivative network of the 

hypercube is the butterfly network. The set V  of vertices of 

an r -dimensional butterfly network correspond to pairs 

],[ iw , where i  is the dimension or level of a node 

)(0 ri   and w  is an r -bit binary number that denotes 

the row of the node. Two nodes ],[ iw  and ],[ iw   are 

linked by an edge if and only if 1=  ii  and either: 

    1.  w  and w  are identical, or  

    2.  w  and w  differ in precisely the i th bit.  

  The edges in the network are undirected. An r -dimensional 

butterfly network is denoted by )(rBF . Manuel et el. [17] 

proposed the diamond representations of these networks. The 

normal and diamond representations of 3 -dimensional 

butterfly network are given in Fig. 1. The vertex and edge 

cardinalities are 1)(2 rr
 and 

12 rr  respectively. 

Figure  1: (a)Normal representation of butterfly 

(3)BF  (b)Diamond representation of butterfly (3)BF  

Lemma 2.1.1.  For any graph G , when 1=  , 

)(=)( 11 GGM  . 

Now we compute certain degree based topological indices for 

butterfly network. Following theorem presents the 

analytically closed formula of general sum-connectivity index 

)(GX  with 
2

1
,

2

1
1,1,=   for this network. 

Theorem 2.1.1.  Consider the butterfly network )(rBF , 

then its general sum-connectivity index is equal to 

=))(( rBFX  
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Proof.  Consider H  be the butterfly network with defining 

parameter r . The number of vertices and edges in H  are 

1)(2 rr
 and 

12 rr  respectively. There are two types of 

edges in H  based on degrees of end vertices of each edge. 

Table 1 shows such an edge partition of H . 

Table  1: Edge partition of butterfly network )(rBF  based on 

degrees of end vertices of each edge. 

),( vu dd  where 

)(GEuv  

(2,4)  (4,4)  

Number of edges  22 r
 

   
2)(2 1  rr

 

For 1=  

Now we apply the formula of )(GR  for 1= .  

1

)(

1 )(=)( 



 vu

GEuv

ddGX  

  By using edge partition given in table 1, we get, 

)
44

1
2))(((2)

42

1
(2=)( 12

1





 rHX rr
 

  After simplifying, we get a non-linear expression in 

parameter r ,  

.)2
12

1

8
(=)( 1

1

 rr
HX  

For 
2

1
=  

  We apply the formula of )(GX  for 
2

1
= .  

)(

1
=)(

)(2

1

vuGEuv dd
GX



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   By using edge partition given in table 1, we get this non-

linear expression in parameter r , 

)
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1
2))(((2)
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1
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


 rHX rr
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4

2
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2

1

 rr
HX  

For 1=   

  We apply the formula of )(GX  for 1=  .  

)(=)(
)(

1 vu

GEuv

ddGX 


  

4)2))(4((24)(22=)( 12

1  

 rHX rr
 

.2)2(8=)( 1

1



  rrHX  

For 
2

1
=   

  We apply the formula of )(GX  for 
2

1
=  .  

)(=)(
)(2

1 vu

GEuv

ddGX 



 

)442))(((2)42(2=)( 12

2

1  


rHX rr

 

.8)262(4=)( 1

2

1




 rrHX  

 

The subsequent corollaries of above theorem and lemmas 1.1 

and 2.1.1 are following. 

Corollary 2.1.1.  For butterfly network )(rBF , the 

Harmonic index is equal to  

.)2
6

1

2
(=))(( 1 rr

rBFH  

Corollary 2.1.1.  For butterfly network )(rBF , the first 

zagreb index is equal to  

.2)2(8=))(( 1

1

 rrrBFM
 

  The ABC  and GA  indices of this network have already 

been studied in other papers. We compute 4ABC  and 5GA  

indices of this r -dimensional network. We need an edge 

partition of this graph based on degree sum of neighbors of 

end vertices of each edge. Table 2 shows such a partition of 

this graph.   
Table  2: Edge partition of graph of r -dimensional 

),( vu SS where 

)(GEuv  

Number of edges 

(8,12)  22 r
 

(12,16)  22 r
 

(16,16)  
    

14)2(  rr  

 

butterfly network based on degree sum of vertices lying at 

unit distance from end vertices of each edge. 

  Following theorem exhibits the analytically closed result of 

4ABC  index for this network. 

Theorem 2.1.2.  Consider the r -dimensional butterfly 

network, then its 4ABC  index is a non-linear expression in 

parameter r ,  

.)2
12

78

2

3

4

30

16

30
(=))(( 1

4

 rrrBFABC  
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Proof.  Consider H  be the r -dimensional butterfly network 

with defining parameter r . The number of vertices and edges 

in H  are 1)(2 rr
 and 

12 rr  respectively. There are three 

types of edges in H  based on degrees of end vertices of each 

edge. Table 2 shows such an edge partition of H . 

  We know  

vu

vu

GEuv SS

SS
GABC

2
=)(

)(

4




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


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
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r
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r
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  By doing some calculation, we get this non-linear 

expression in defining parameter, 
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   In the following theorem, we compute 5GA  index of r -

dimensional butterfly network. 

Theorem 2.1.3.  Consider the r -dimensional butterfly 

network, the its 5GA  index is a non-linear expression in 

parameter r ,  

.4)2
7

38

5

64
(=))(( 1

5

 rrrBFGA  

Proof.  Let H  be the r -dimensional butterfly network. We 

easily prove it by using edge partition given in table 2. We 

know  

)(

2
=)(
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5

vu
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

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
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
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r
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r
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By doing some calculation, we get this non-linear expression 

in parameter r  

 

.4)2
7

38

5

64
(=))(( 1

5

 rrrBFGA  

 

  Now we deal with another type of important direct IN 

named as Benes network. We give analytically closed results 

for topological indices of these networks which provide us a 

base to understand their topologies of these well-designed 

architectures. 

   

2.2  Results for Benes network 

An r -dimensional Benes network is nothing but back-to-

back butterflies. An r -dimensional Benes network has 

12 r  levels, each level with r2  nodes. The level 0  to 

level r  nodes in the network form an r -dimensional 

butterfly. The middle level of the Benes network is shared by 

these butterflies. An r -dimensional Benes is denoted by 

)(rB . Manuel et al. proposed the diamond representation of 

the Benes network also [17]. Fig. 2 shows the normal 

representation of (3)B  network, while diamond 

representation of (3)B  is depicted in Fig. 3. The number of 

vertices and number of edges in an r -dimensional Benes 

network are 1)(22 rr
 and 

22 rr  respectively. 

Figure  2: Normal representation of Benes network (3)B .  

Figure  3: Diamond representation of Benes network 

(3)B . 
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Now we compute certain degree based topological indices for 

Benes network. Following theorem presents the analytically 

closed formula of general sum-connectivity index )(GX  

with 
2

1
,

2

1
1,1,=   for this network. 

Theorem 2.2.1.  Consider the Benes network )(rB , then its 

general sum-connectivity index is equal to 

=))(( rBX  
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Proof.  Consider H  be the Benes network with defining 

parameter r . The number of vertices and edges in H  are 

1)(22 rr
 and 

22 rr  respectively. There are two types of 

edges in H  based on degrees of end vertices of each edge. 

Table 3 shows such an edge partition of H . 

Table  3: Edge partition of Benes network )(rB  based on 

degrees of end vertices of each edge. 

),( vu dd  where 

)(GEuv  

(2,4)  (4,4)  

Number of edges  22 r
 1)(2 2  rr

 

For 1=  

Now we apply the formula of )(GR  for 1= .  

1
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GEuv
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  By using edge partition given in table 3, we get, 
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1
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
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  After simplifying, we get a non-linear expression in 

parameter r ,  
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  By using edge partition given in table 3, we get this non-

linear expression in parameter r , 

)
44

1
1))(((2)

42

1
(2=)( 22

2

1





 rHX rr

.)2
4

2

6

6

4

2
(=)( 2

2

1

 rr
HX  

For 1=   

  We apply the formula of )(GX  for 1=  .  

)(=)(
)(

1 vu

GEuv

ddGX 


  

4)1))(4((24)(22=)( 22

1  

 rHX rr
 

.2)2(8=)( 2

1



  rrHX  

For 
2

1
=   

  We apply the formula of )(GX  for 
2

1
=  .  

)(=)(
)(2

1 vu

GEuv

ddGX 



 

)441))(((2)42(2=)( 22

2

1  


rHX rr

 

.4)26(4=)( 2

2

1




 rrHX  

The subsequent corollaries of above theorem and lemmas 1.1 

and 2.1.1 are following. 

Corollary 2.1.1.  For Benes network )(rB , the Harmonic 

index is equal to  

.)2
12

1

4
(=))(( 2 rr

rBH  

Corollary 2.1.1.  For Benes network )(rB , the first zagreb 

index is equal to  

.2)2(8=))(( 2

1

 rrrBM  

  The ABC  and GA  indices of this network have already 

been calculated in other papers. We compute 4ABC  and 

5GA  indices of this r -dimensional network. We need an 

edge partition of this graph based on degree sum of neighbors 

of end vertices of each edge. Table 4 shows such a partition 

of this graph.   

Table  4: Edge partition of graph of r -dimensional Benes 

network based on degree sum of vertices lying at unit distance 

from end vertices of each edge. 

),( vu SS  where 

)(GEuv  

Number of edges 
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  Following theorem exhibits the analytically closed result of 

4ABC  index for this network. 

Theorem 2.2.2.  Consider the r -dimensional Benes network, 

then its 4ABC  index is a non-linear expression in parameter 

r ,  
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Proof.  Consider H  be the r -dimensional Benes network 

with defining parameter r . The number of vertices and edges 

in H  are 1)(22 rr
 and 

22 rr  respectively. There are 

three types of edges in H  based on degrees of end vertices 

of each edge. Table 4 shows such an edge partition of H . 
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By doing some calculation, we get this non-linear expression 

in defining parameter, 
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In the following theorem, we compute 5GA  index of r -

dimensional Benes network. 

Theorem 2.2.3.  Consider the r -dimensional Benes network, 

the its 5GA  index is equals to  
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Proof.  Let H  be the r -dimensional Benes network. We 

easily prove it by using edge partition given in table 4. We 

know  
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  By doing some calculation, we get this non-linear 

expression in parameter r  
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3  CONCLUDING REMARKS 

In this paper, certain degree based topological indices, 

namely general sum-connectivity index, Harmonic index, 

first Zagreb index, fourth atomic-bond connectivity index 

( 4ABC ) and fifth geometric-arithmetic index ( 5GA ) for two 

important class of networks were studied for the first time. 

We computed analytically closed results of these degree 

based topological indices for butterfly and Benes 

interconnection networks. These results provide a base to 

understand the topology of these networks. In future, we are 

interested to study fat tree network and extended fat tree 

network. 
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